GEOMETRİK KAVRAMLAR
Geometride “Nokta”, “Doğru”, “Düzlem” gibi kavramlar tanımsız olarak kabul edilir.
1. Nokta: “.” biçiminde gösterilir. Boyutu yoktur.
2. Doğru: İki uçtan sınırsız noktalar kümesidir.
3. Düzlem: Her yönde sonsuza giden noktalar kümesidir.
E düzlemi dört yönde de sonsuza kadar gider.
| E düzlemi yandaki gibi gösterilir. |
4. Doğru Parçası : İki nokta ile bu iki nokta arasında kalan noktaların birleşimidir.
[AB] sembolüyle gösterilir.
[AB] : AB doğru parçası
|AB| : AB doğru parçasının uzunluğu
5. Işın : Bir başlangıç noktası olup sonsuza giden noktalar kümesidir.
[AB : AB ışını
6. Yarı Doğru: [AB ışınından A noktasının çıkarılması ile elde edilen kümeye AB yarıdoğrusu denir.
]AB sembolüyle gösterilir.
Doğrusal nokta kümelerinin gösterimi
| [AB]: A ve B noktaları dahil. |
[AB[: A noktası dahil, B noktası dahil değil |
]AB[: A ve B noktaları dahil değil |
AÇILAR ;
Başlangıç noktaları ortak iki ışının birleşimine açı denir.
şekilde [AC ve [AB ışınının oluşturduğu açı BAC açısıdır.
[AB [AC = BAC açısıdır.BAC, CAB olarak veya A ile gösterilir.[AB ve [AC ışınları açının kenarları, A noktası açının köşesidir. | |
Açı yazılırken açının köşesi olan nokta ortada yazılır.
1. Açının Ölçüsü
[AB ile [AC arasındaki açıklığın ifadesine açının ölçüsü denir. BAC açısının ölçüsü a dır.m(BAC) = veya m(A) = olarak gösterilir. | |
è ölçüleri eşit olan açılara eş açılar denir.
2. Açının Düzlemde Ayırdığı Bölgeler
Bir açı düzlemi üç bölgeye ayırır. a. Açının kendisi [AB ve [AC ışınları. b. İç bölge (taralı alan) c. Dış bölge | |
3. Açı ölçü birimleri
Açı ölçüsü birimi olarak genelde derece kullanılır. Dereceden başka Grad ve Radyan birimleri de kullanılır. Açı ölçüsü birimleri arasında,
360° = 400 G(grad) = 2 (radyan) eşitliği vardır. Bir ışının başlangıç noktası etrafında bir tur döndürülmesi ile elde edilen açı 360° dir.
Derecenin alt birimleri
1° = 60' (dakika) 1' = 60" (saniye) 1° = 3600" dir. 90° = 89° 59' 60" ve 180° = 179° 59' 60" olur. | |
4. Ölçülerine göre açılar
a. Ölçüsü 0° ile 90° arasında olan açılara dar açı denir. | |
b. Ölçüsü 90° olanaçılara dik açı denir | |
c. Ölçüsü 90° ile 180° arasında olan açılara geniş açı denir. | |
d. Ölçüsü 180° olan açılara doğru açı denir. | |
e. Ölçüsü 360° olan açıya tam açı denir. | |
5. Komşu açılar
Köşeleri ve birer ışınları ortak olan, iç bölgesi ortak olmayan açılara komşu açılar denir. CAD ile DAB komşu açılardır. | |
6. Açıortay
Açıyı iki eşit parçaya bölen ışına açıortay denir. [AD, CAB açısının açıortayıdır. Açıortay üzerinde alınan her noktanın açının kollarına olan dik uzaklıkları eşittir. | |
7. Tümler açı
Ölçüleri toplamı 90° olan iki açıya tümler açılar denir. a açısının tümlerinin ölçüsü (90° – a) dır. | |
Komşu tümler iki açının açıortay doğruları arasındaki açının ülçüsü 45° dir.
8. Bütünler açı
Ölçüleri toplamı 180° olan iki açıya bütünler açılar denir. | |
m(DAB)+m(CAD)=180° x+y=180° |
x açısının bütünlerinin ölçüsü (180° – x) dir.
Komşu bütünler iki açının açıortay doğruları arasındaki açının ölçüsü 90° dir.
9. Ters Açılar
Kesişen iki doğrunun oluşturduğu açılardan komşu olmayanlara ters açılar denir.
Ters açıların ölçüleri eşittir. |
m(x)=m(z) ve m(t)=m(y) dir. | |
10. Paralel iki doğrunun bir kesenle yaptığı açılar
a. Yöndeş açılar
d1 // d2 ise
Yöndeş açıların ölçüleri eşittir. |
| |
m(a) = m(x) ; m(b) = m(y)
m(c) = m(z) ; m(d) = m(t)
b. İçters açılar
d1 // d2 ise a ile z ve b ile t içters açılarıdır.
İçters açıların ölçüleri eşittir. |
m(a) = m(z) ; m(b) = m(t) | |
Dışters açılar
d1 // d2 ise
Dışters açıların ölçüleri eşittir. |
m(c)=m(x)=m(d)=m(y) | |
d. Karşı durumlu açılar
d1 // d2 ise
Karşı durumlu açıların toplamı 180° dır. |
m(a) + m(t) = 180° ; m(b) + m(z) = 180° | |
Karşı durumlu açıların açıortayları arasındaki açının ölçüsü 90° dir.
Paralel doğrular arasında birden fazla kesenin olduğu durumlarda kesişim noktalarından yeni paraleller çizilir. |
e. Birden fazla kesenli durumlar
d1 // d2 ise B noktasından d1 ve d2 doğrularına paralel çizersek m(ABC) = a + b olur. | |
B noktasından paralel çizersek m(ABD) + x = 180° m(DBC) + z = 180° buradan x + y + z = 360° dir. | |
f. Paralel doğrular arasındaki ardışık zıt yönlü açılar
d1 // d2 ise a + b + c = x + y olur. Bu tür soruları kırılma noktalarından paraleller çizerek de çözebiliriz. | |
g. Kolları paralel ve kolları dik açılar
èAçıları oluşturan ışınlar aynı yönde ve paralel ise bu iki açının ölçüsü eşittir. | |
èAçıları oluşturan ışınlar zıt yönlü ve paralel ise bu iki açının ölçüsü eşittir. | |
èAçıları oluşturan ışınlardan biri aynı diğeri zıt yönlü ve paralel ise bu iki açının ölçüleri toplamı; = 180° olur. | |
èKenarları birbirine dik karşılıklı iki açının ölçüleri toplamı = 180° olur. | |
èKenarları şekildeki gibi birbirine dik açıların ölçüleri eşittir. | |
:D (y)
YanıtlaSil