A. ARKSİNÜS FONKSİYONU
f(x) = sinx fonksiyonunun tanım aralığı alınırsa bu fonksiyon bire bir ve örten olur.
Bu durumda,
fonksiyonunun tersi,
f–1(x) = sin–1x veya f–1(x) = arcsinx
şeklinde gösterilir ve
B. ARKKOSİNÜS FONKSİYONU
f(x) = cosx fonksiyonunun tanım aralığı
[0, p] alınırsa bu fonksiyon bire bir ve örten olur. Bu durumda,
f : [0, p] ® [–1, 1]
f(x) = cosx
fonksiyonunun tersi,
f–1(x) = cos–1x veya f–1(x) = arccosx
şeklinde gösterilir ve
arccos : [–1, 1] ® [0, p] dir.
C. ARKTANJANT FONKSİYONU
f(x) = tanx fonksiyonunun tanım aralığı
alınırsa bu fonksiyon bire bir ve örten olur.
Bu durumda,
fonksiyonunun tersi,
f–1(x) = tan–1x veya f–1(x) = arctanx
şeklinde gösterilir ve
D. ARKKOTANJANT FONKSİYONU
fonksiyonu bire bir ve örtendir.
fonksiyonuna cotx in ters fonksiyonu denir. Kotanjant fonksiyonunun tersi,
şeklinde gösterilir.
Sonuç
Bir fonksiyonun ters fonksiyonunun ters fonksiyonu fonksiyonun kendisine eşittir. sin(arcsinx) = x tir. cos(arccosx) = x tir. tan(arctanx) = x tir. cot(arccotx) = x tir. |
Sonuç
q = arcsinx ise, x = sinq dır. q = arccosx ise, x = cosq dır. q = arctanx ise, x = tanq dır. q = arccotx ise, x = cotq dır. |
IV. ÜÇGENDE TRİGONOMETRİK BAĞINTILAR
A. SİNÜS TEOREMİ
Kural
Bir ABC üçgeninin kenar uzunlukları a, b, c; çevrel çemberinin yarıçapı R birim olmak üzere, B. KOSİNÜS TEOREMİ Kural
C. ÜÇGENİN ALANI Sonuç
|
Hiç yorum yok:
Yorum Gönder
Lütfen Yorumunuzun anlaşılır ve imla kurallarına uygun olmasına dikkat ediniz.